Thursday, February 16, 2017

Microsoft

Microsoft Corporation /ˈmkrəˌsɒft-r--ˌsɔːft/[6][7] (commonly referred to as Microsoft or MS) is an American multinationaltechnology company headquartered in Redmond, Washington, that develops, manufactures, licenses, supports and sells computer softwareconsumer electronics and personal computers and services. Its best known software products are the Microsoft Windows line of operating systemsMicrosoft Office office suite, and Internet Explorer and Edge web browsers. Its flagship hardware products are the Xbox video game consoles and the Microsoft Surface tablet lineup. As of 2016, it was the world's largest software maker by revenue,[8] and one of the world's most valuable companies.[9]
Microsoft was founded by Paul Allen and Bill Gates on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800. It rose to dominate the personal computer operating system market with MS-DOS in the mid-1980s, followed by Microsoft Windows. The company's 1986 initial public offering (IPO), and subsequent rise in its share price, created three billionaires and an estimated 12,000 millionaires among Microsoft employees. Since the 1990s, it has increasingly diversified from the operating system market and has made a number of corporate acquisitions. In May 2011, Microsoft acquired Skype Technologies for $8.5 billion,[10] and in December 2016 bought LinkedIn for $26.2 billion.[11]
As of 2015, Microsoft is market-dominant in the IBM PC-compatible operating system market and the office software suite market, although it has lost the majority of the overall operating system market to Android.[12] The company also produces a wide range of other software for desktops and servers, and is active in areas including Internet search (with Bing), the video game industry (with the XboxXbox 360 and Xbox One consoles), the digital services market (through MSN), and mobile phones (via the operating systems of Nokia's former phones[13] and Windows Phone OS). In June 2012, Microsoft entered the personal computer production market for the first time, with the launch of the Microsoft Surface, a line of tablet computers. With the acquisition of Nokia's devices and services division to form Microsoft Mobile, the company re-entered the smartphone hardware market, after its previous attempt, Microsoft Kin, which resulted from their acquisition of Danger Inc.[14]
The word "Microsoft" is a portmanteau of "microcomputer" and "software".[15]

Star

star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, the Milky Way, are invisible to the naked eye from Earth. Indeed, most are invisible from Earth even through the most powerful telescopes.
For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, and for some stars by supernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matterAstronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space, its luminosity, and spectrum respectively. The total mass of a star is the main factor that determines its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram (H–R diagram). Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined.
A star's life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process.[1] The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted.[2] In some cases, it will fuse heavier elements at the core or in shells around the core. As the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars.[3] Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole.
Binary and multi-star systems consist of two or more stars that are gravitationally bound and generally move around each other in stable orbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution.[4] Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy.

Environmental science

Environmental science is an interdisciplinary academic field that integrates physical, biological and information sciences (including ecologybiologyphysicschemistryzoologymineralogyoceanologylimnologysoil sciencegeologyatmospheric science, and geodesy) to the study of the environment, and the solution of environmental problems. Environmental science emerged from the fields of natural history and medicine during the Enlightenment.[1] Today it provides an integrated, quantitative, and interdisciplinary approach to the study of environmental systems.[2]
Related areas of study include environmental studies and environmental engineering. Environmental studies incorporates more of the social sciences for understanding human relationships, perceptions and policies towards the environment. Environmental engineering focuses on design and technology for improving environmental quality in every aspect.
Environmental scientists work on subjects like the understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management, and the effects of global climate changeEnvironmental issues almost always include an interaction of physical, chemical, and biological processes. Environmental scientists bring a systems approach to the analysis of environmental problems. Key elements of an effective environmental scientist include the ability to relate space, and time relationships as well as quantitative analysis.
Environmental science came alive as a substantive, active field of scientific investigation in the 1960s and 1970s driven by (a) the need for a multi-disciplinary approach to analyze complex environmental problems, (b) the arrival of substantive environmental laws requiring specific environmental protocols of investigation and (c) the growing public awareness of a need for action in addressing environmental problems. Events that spurred this development included the publication of Rachel Carson's landmark environmental book Silent Spring[3] along with major environmental issues becoming very public, such as the 1969 Santa Barbara oil spill, and the Cuyahoga River of Cleveland, Ohio, "catching fire" (also in 1969), and helped increase the visibility of environmental issues and create this new field of study.

Telephone

telephone, or phone, is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be heard directly. A telephone converts sound, typically and most efficiently the human voice, into electronic signals suitable for transmission via cables or other transmission media over long distances, and replays such signals simultaneously in audible form to its user.
In 1876, Scottish emigrant Alexander Graham Bell was the first to be granted a United States patent for a device that produced clearly intelligible replication of the human voice. This instrument was further developed by many others. The telephone was the first device in history that enabled people to talk directly with each other across large distances. Telephones rapidly became indispensable to businesses, government, and households, and are today some of the most widely used small appliances.
The essential elements of a telephone are a microphone (transmitter) to speak into and an earphone (receiver) which reproduces the voice in a distant location. In addition, most telephones contain a ringer which produces a sound to announce an incoming telephone call, and a dial or keypad used to enter a telephone number when initiating a call to another telephone. Until approximately the 1970s most telephones used a rotary dial, which was superseded by the modern DTMF push-button dial, first introduced to the public by AT&T in 1963.[1] The receiver and transmitter are usually built into a handset which is held up to the ear and mouth during conversation. The dial may be located either on the handset, or on a base unit to which the handset is connected. The transmitter converts the sound waves to electrical signals which are sent through the telephone network to the receiving phone. The receiving telephone converts the signals into audible sound in the receiver, or sometimes a loudspeaker. Telephones permit duplex communication, meaning they allow the people on both ends to talk simultaneously.
The first telephones were directly connected to each other from one customer's office or residence to another customer's location. Being impractical beyond just a few customers, these systems were quickly replaced by manually operated centrally located switchboards. This gave rise to landline telephone service in which each telephone is connected by a pair of dedicated wires to a local central office switching system, which developed into fully automated systems starting in the early 1900s. For greater mobility, various radio systems were developed for transmission between mobile customer stations on ships and automobiles from the 1930s by the mid-1900s. The first hand-held mobile phone was introduced for personal service starting in 1973 by Motorola. By the late 1970s several mobile telephone networks operated around the world. In 1983, the Advanced Mobile Phone System (AMPS) was launched in the U.S. and in other countries soon after, and offered a standardized technology providing portability for users within a region far beyond the personal residence or office location. These analog cellular system evolved into digital networks with better security, greater capacity, better regional coverage, and lower cost. The public switched telephone network, with its hierarchical system of many switching centers, interconnects telephones around the world for communication with each other. With the standardized international numbering system, E.164, each telephone line has an identifying telephone number, that may be called from any authorized telephone on the network.
Although originally designed for simple voice communications, convergence has enabled most modern cell phones to have many additional capabilities. They may be able to record spoken messages, send and receive text messagestake and display photographs or video, play music or gamessurf the Internet, do road navigation or immerse the user in virtual reality. Since 1999, the trend for mobile phones is smartphones that integrate all mobile communication and computing needs.

Tsunami

tsunami (from Japanese津波, "harbour wave";[1] English pronunciation: /tsˈnɑːmi/[2]) , also known as a seismic sea wave, is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake.[3] Earthquakesvolcanic eruptions and other underwater explosions (including detonations of underwater nuclear devices), landslides, glacier calvingsmeteorite impacts and other disturbances above or below water all have the potential to generate a tsunami.[4] Unlike normal ocean waves which are generated by wind, or tides which are generated by the gravitational pull of the Moon and Sun, a tsunami is generated by the displacement of water.
Tsunami waves do not resemble normal undersea currents or sea waves, because their wavelength is far longer.[5] Rather than appearing as a breaking wave, a tsunami may instead initially resemble a rapidly rising tide, and for this reason they are often referred to as tidal waves, although this usage is not favoured by the scientific community because tsunamis are not tidal in nature. Tsunamis generally consist of a series of waves with periods ranging from minutes to hours, arriving in a so-called "internal wave train".[6] Wave heights of tens of metres can be generated by large events. Although the impact of tsunamis is limited to coastal areas, their destructive power can be enormous and they can affect entire ocean basins; the 2004 Indian Ocean tsunami was among the deadliest natural disasters in human history with at least 230,000 people killed or missing in 14 countries bordering the Indian Ocean.
Greek historian Thucydides suggested in his late-5th century BC History of the Peloponnesian War, that tsunamis were related to submarine earthquakes,[7][8] but the understanding of a tsunami's nature remained slim until the 20th century and much remains unknown. Major areas of current research include trying to determine why some large earthquakes do not generate tsunamis while other smaller ones do; trying to accurately forecast the passage of tsunamis across the oceans; and also to forecast how tsunami waves interact with specific shorelines.

Radar

Radar is an object-detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraftguided missilesmotor vehiclesweather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the object(s). Radio waves (pulsed or continuous) from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.
Radar was developed secretly for military use by several nations in the period before and during World War II. The term RADAR was coined in 1940 by the United States Navy as an acronym for RAdio Detection And Ranging[1][2] or RAdio Direction And Ranging.[3][4] The term radar has since entered English and other languages as a common noun, losing all capitalization.
The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomyair-defence systemsantimissile systemsmarine radars to locate landmarks and other ships, aircraft anticollision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, altimetry and flight control systemsguided missile target locating systems, ground-penetrating radar for geological observations, and range-controlled radar for public health surveillance.[5] High tech radar systems are associated with digital signal processingmachine learning and are capable of extracting useful information from very high noise levels.
Other systems similar to radar make use of other parts of the electromagnetic spectrum. One example is "lidar", which uses ultraviolet, visible, or near infrared light from lasers rather than radio waves.

Human

Modern humans (Homo sapiens, primarily ssp. Homo sapiens sapiens) are the only extant members of Hominina tribe (or human tribe), a branch of the tribe Hominini belonging to the family of great apes. They are characterized by erect posture and bipedal locomotionmanual dexterity and increased tool use, compared to other animals; and a general trend toward larger, more complex brains and societies.[3][4]
Early hominins—particularly the australopithecines, whose brains and anatomy are in many ways more similar to ancestral non-human apes—are less often referred to as "human" than hominins of the genus Homo.[5] Several of these hominins used fireoccupied much of Eurasia, and gave rise to anatomically modern Homo sapiens in Africa about 200,000 years ago.[6][7] They began to exhibit evidence of behavioral modernity around 50,000 years ago. In several waves of migration, anatomically modern humans ventured out of Africa and populated most of the world.[8]
The spread of humans and their large and increasing population has had a profound impact on large areas of the environment and millions of native species worldwide. Advantages that explain this evolutionary success include a relatively larger brain with a particularly well-developed neocortexprefrontal cortex and temporal lobes, which enable high levels of abstract reasoninglanguageproblem solvingsociality, and culture through social learning. Humans use tools to a much higher degree than any other animal, are the only extant species known to build fires and cook their food, and are the only extant species to clothe themselves and create and use numerous other technologies and arts.
Humans are uniquely adept at utilizing systems of symbolic communication (such as language and art) for self-expression and the exchange of ideas, and for organizing themselves into purposeful groups. Humans create complex social structures composed of many cooperating and competing groups, from families and kinship networks to political statesSocial interactions between humans have established an extremely wide variety of values,[9] social norms, and rituals, which together form the basis of human society. Curiosity and the human desire to understand and influence the environment and to explain and manipulate phenomena (or events) has provided the foundation for developing sciencephilosophymythologyreligionanthropology, and numerous other fields of knowledge.
Though most of human existence has been sustained by hunting and gathering in band societies,[10] increasing numbers of human societies began to practice sedentary agriculture approximately some 10,000 years ago,[11] domesticating plants and animals, thus allowing for the growth of civilization. These human societies subsequently expanded in size, establishing various forms of government, religion, and culture around the world, unifying people within regions to form states and empires. The rapid advancement of scientific and medical understanding in the 19th and 20th centuries led to the development of fuel-driven technologies and increased lifespans, causing the human population to rise exponentially. Today the global human population is estimated by the United Nations to be near 7.5 billion.[12]

Psychology

Psychology is the study of behavior and mind, embracing all aspects of conscious and unconscious experience as well as thought. It is an academic discipline and a social science which seeks to understand individuals and groups by establishing general principles and researching specific cases.[1][2] In this field, a professional practitioner or researcher is called a psychologist and can be classified as a socialbehavioral, or cognitive scientist. Psychologists attempt to understand the role of mental functions in individual and social behavior, while also exploring the physiological and biological processes that underlie cognitive functions and behaviors.
Psychologists explore behavior and mental processes, including perceptioncognitionattentionemotion (affect), intelligencephenomenologymotivation (conation), brain functioning, and personality. This extends to interaction between people, such as interpersonal relationships, including psychological resiliencefamily resilience, and other areas. Psychologists of diverse orientations also consider the unconscious mind.[3] Psychologists employ empirical methods to infer causal and correlational relationships between psychosocial variables. In addition, or in opposition, to employing empirical and deductive methods, some—especially clinical and counseling psychologists—at times rely upon symbolic interpretation and other inductive techniques. Psychology has been described as a "hub science",[4] with psychological findings linking to research and perspectives from the social sciences, natural sciencesmedicinehumanities, and philosophy.
While psychological knowledge is often applied to the assessment and treatment of mental health problems, it is also directed towards understanding and solving problems in several spheres of human activity. By many accounts psychology ultimately aims to benefit society.[5][6] The majority of psychologists are involved in some kind of therapeutic role, practicing in clinical, counseling, or school settings. Many do scientific research on a wide range of topics related to mental processes and behavior, and typically work in university psychology departments or teach in other academic settings (e.g., medical schools, hospitals). Some are employed in industrial and organizational settings, or in other areas[7] such as human development and agingsportshealth, and the media, as well as in forensic investigation and other aspects of law.