Wednesday, February 15, 2017

Rocket

rocket (from Italian rocchetto "bobbin")[nb 1][1] is a missilespacecraftaircraft or other vehicle that obtains thrust from a rocket engine. Rocket engine exhaust is formed entirely from propellant carried within the rocket before use.[2] Rocket engines work by action and reaction and push rockets forward simply by expelling their exhaust in the opposite direction at high speed, and can therefore work in the vacuum of space.
In fact, rockets work more efficiently in space than in an atmosphere. Multistage rockets are capable of attaining escape velocity from Earth and therefore can achieve unlimited maximum altitude. Compared with airbreathing engines, rockets are lightweight and powerful and capable of generating large accelerations. To control their flight, rockets rely on momentum, airfoils, auxiliary reaction enginesgimballed thrustmomentum wheelsdeflection of the exhaust stream, propellant flow, spin, and/or gravity.
Rockets for military and recreational uses date back to at least 13th century China.[3] Significant scientific, interplanetary and industrial use did not occur until the 20th century, when rocketry was the enabling technology for the Space Age, including setting foot on the Earth's moon. Rockets are now used for fireworksweaponryejection seatslaunch vehicles for artificial satelliteshuman spaceflight, and space exploration.
Chemical rockets are the most common type of high power rocket, typically creating a high speed exhaust by the combustion of fuel with an oxidizer. The stored propellant can be a simple pressurized gas or a single liquid fuel that disassociates in the presence of a catalyst (monopropellants), two liquids that spontaneously react on contact (hypergolic propellants), two liquids that must be ignited to react, a solid combination of fuel with oxidizer (solid fuel), or solid fuel with liquid oxidizer (hybrid propellant system). Chemical rockets store a large amount of energy in an easily released form, and can be very dangerous. However, careful design, testing, construction and use minimizes risks.
The name Rocket comes from the Italian rocchetta, meaning "bobbin" or "little spindle", given due to the similarity in shape to the bobbin or spool used to hold the thread to be fed to a spinning wheel. The Italian term was adopted into German in the mid 16th century by Leonhard Fronsperger and Conrad Haas, and by the early 17th century into English.[1] Artis Magnae Artilleriae pars prima, an important early modern work on rocket artillery, by Kazimierz Siemienowicz, was first printed in Amsterdam in 1650.
The first iron-cased rockets were developed in the late 18th century in the Kingdom of Mysore, adopted and improved as the Congreve rocket and used in the Napoleonic Wars. The first mathematical treatment of the dynamics of rocket propulsion is due to William Moore (1813). In 1815, Alexander Dmitrievich Zasyadko constructed rocket-launching platforms, which allowed rockets to be fired in salvos (6 rockets at a time), and gun-laying devices. William Hale in 1844 greatly increased the accuracy of rocket artillery. The Congreve rocket was further improved by Edward Mounier Boxer in 1865.
Konstantin Tsiolkovsky (1903) first speculated on the possibility of manned spaceflight with rocket technology. Robert Goddard in 1920 published proposed improvements to rocket technology in A Method of Reaching Extreme Altitudes. In 1923, Hermann Oberth (1894–1989) published Die Rakete zu den Planetenräumen ("The Rocket into Planetary Space")
In 1943, production of the V-2 rocket began in Germany. In parallel with the guided missile programme, rockets were also used on aircraft, either for assisting horizontal take-off (RATO), vertical take-off (Bachem Ba 349 "Natter") or for powering them (Me 163, see list of World War II guided missiles of Germany). The Allies' rocket programs were less sophisticated, relying mostly on unguided missiles like the Soviet Katyusha rocket. The Americans captured a large number of German rocket scientists, including Wernher von Braun, and brought them to the United States as part of Operation Paperclip. After the war, rockets were used to study high-altitude conditions, by radio telemetry of temperature and pressure of the atmosphere, detection of cosmic rays, and further research; notably the Bell X-1, the first manned vehicle to break the sound barrier. Independently, in the Soviet Union's space program research continued under the leadership of the chief designer Sergei Korolev.Modern rockets originated when Goddard attached a supersonic (de Laval) nozzle to the combustion chamber of a liquid-propellant rocket. These nozzles turn the hot gas from the combustion chamber into a cooler, hypersonic, highly directed jet of gas, more than doubling the thrust and raising the engine efficiency from 2% to 64%. Use of liquid propellants instead of gunpowder greatly improved the effectiveness of rocket artillery in World War II, and opened up the possibility of manned spaceflight after 1945.
During the Cold War, rockets became extremely important militarily as modern intercontinental ballistic missiles (ICBMs). The 1960s became the decade of rapid development of rocket technology particularly in the Soviet Union (VostokSoyuzProton) and in the United States (e.g. the X-15). Rockets were now used for space exploration, with the American manned programs Project MercuryProject Gemini and later the Apollo programme culminated in 1969 with the first manned landing on the moon via the Saturn V.

No comments:

Post a Comment